

50

CHAPTER IV

SYSTEM IMPLEMENTATION

Introduction

In Websim, the administrator has the access to design and manage a

simulation system, they are granted with upload, change, delete and other

administrative privileges. Meanwhile, an ordinary user is only allowed to execute the

simulation system and view the results (as shown in Figure 11). After entering

Websim, the user may select a pre-installed simulation project. Once simulation is

done, the results will be plotted. An independent plotting program, Gnuplot will

translate the ASCII input text file generated by the simulation program into a GIF

image file. The CGI scripts then return an HTML page including the generated

image. The overview of this system implementation is shown in Figure 21.

 51

Figure 21: Block Diagram Of Websim System Implementation

This chapter describes the implementations of Websim. It is organized into

three major sections. The first section discusses the implementation tools used in

Websim development. The next section provides the detailed description of the

applications aspects. Here three important Websim applications are described in

details:

(i) Generating simulation program web-interface.

(ii) Performing simulation over the web; and

(iii) Presentation of simulation results.

The last section of this chapter focuses on the security issues of Websim.

Implementation Tools

Websim utilizes CGI technology and uses Perl as the implementation

language. The controlling CGI scripts, which coordinate the overall activities of

Websim has been written in Perl. It is generally used for two purposes: data

CGI
Script
(Perl)

ASCII
Input
File

GIF
Image

HTML

HTML

ASCII
Output

File

Simulation
Program

Gnuplot

 52

collection and interactive communication. This is achieved by using Perl to generate

HTML. Perl is by far the most widely used language for CGI programming and

contains many powerful features, including:

• Highly portable and readily available.

• Contains extremely powerful string manipulation operators, as well as functions

to deal with binary data.

• Makes calling shell commands very easy, and provides some useful equivalents

of certain system functions.

Another language tool used in Websim is the Javascript. It is used because of

its ability to interact with HTML forms and we would be able to perform verification

of a form before it is submitted. Javascript can also perform preprocessing of input

data, which can reduce the amount of data that must be transmitted to the server. In

some cases, client-side Javascript can eliminate the need for CGI scripts on the

server altogether. On the other hand, Javascript and CGI work well together.

Presentation of simulation results in graphical format is achieved by using a

graph plotting utility named Gnuplot. Gnuplot is a command-line driven interactive

function plotting utility for UNIX, MSDOS, and VMS platforms. This graphical

program allows users to visualize mathematical functions and data. Gnuplot supports

many different types of terminals, plotters, and printers (including many color

devices, and pseudo-devices like LaTeX) and is able to generate a GIF file too.

 53

Generating Simulation Program Web-Interface

We shall discuss the implementation issues related to generating web-

interface HTML file for the simulation program in this section. First, the Websim

administrator must have a Websim-compatible simulation program in his local hard

disk. The simulation program must follow a certain format required by Websim (as

mentioned in Simulation Program section, page 32), and compiled into a binary

format (.exe). Websim does provide a template file for user to refer (as shown in

page 33). Once this is done, simulation program has to be deployed on the Websim

server. Here we present the steps in generating the web-interface file for the

simulation program.

Step 1: Upload simulation program

Websim provides an upload simulation program service, which may be

accessed from the main menu. When this service is called, Websim asks for an

executable (.exe) file from the administrator and require him to specify the number

of input and output parameters for the simulation program (Figure 22). The HTML

tag to request for an upload file is shown below.

<INPUT TYPE="file" NAME="file_name" SIZE="30">

 54

Figure 22: Uploading Simulation Program

Step 2: Upload status notification

Once the next button is clicked, the script tries to upload the local simulation

program into the respective project folder. We first create a variable $simfile to store

the simulation program file’s full path. The file is opened for output using the

MYFILE file handle. The content of the uploaded file $file_name is read and printed

to the file handle. Once this process is completed, we close the file handle and the

file is considered to be successfully uploaded to the server.

 $simfile = join ("", $project{'dir'}, "\\sim.exe");

 open (MYFILE, ">$simfile") || die $!;

 while(read($file_name,$data,1024))
 { print MYFILE $data;

}

 close (MYFILE);

 55

If the simulation program is successfully uploaded to the server, a confirmation

message will be displayed on the screen, as shown in Figure 23.

Figure 23: Confirmation on Successful Simulation Program Upload

Step 3: Enter web-interface settings

Here the administrator has to specify the web interface settings such as

project titles, description of project, name of simulation inputs, etc. (as shown in

Figure 24). The number of text fields for input parameters is determined in step 1,

and the script to perform this task is shown below. The $in variable store the number

of input parameters and input$n variable is used to keep the name of the parameter.

#$in = number of input parameter

for ($n=1; $n<=$in; $n++) {

$temp = $q->param('input'.$n);

print <<HTML;

Param. $n: <input type="text" name="input$n"

value="$temp" size="25">

HTML

 }

 56

All the data collected here will be used to create a HTML file, which will act

as the web-interface for the simulation program.

Figure 24: Form Collecting Information for Web-Interface File

Step 4: Preview and finalize settings

Once all the setting form fields are entered, the user has to click on the

"Create HTML File" button to create a new HTML interface file. Websim provides a

preview function for users to preview the settings made earlier by just clicking on the

"Preview" button. When this button is pressed, a new window appears showing the

 57

final web-interface file. The final web-interface file contains not only the project

name and descriptions, but also some output graph settings such as graph size, graph

title, graph type, etc. At the bottom of the interface file is found a "Run Simulation"

button used to trigger a script, which will execute the simulation program. Figure 25

shows a snapshot of the preview page.

Figure 25: Preview of HTML Interface File

 58

 If a user chooses to further alter or edit certain settings, he may do so by

entering the new settings on respective fields and click on the "Create HTML File"

button again. Once satisfied, the user has to click on the "Finish" button to

permanently save the file in the simulation project folder. The file is saved as a

HTML file with the name "index.htm" so that it becomes the default page of the

simulation project folder. Lastly, the URL of the simulation project folder is

displayed (Figure 26).

Figure 26: Display URL of Simulation Project Folder to User

Performing Simulation over the Web

Among the central components of Websim are the interfaces to simulation

program. Simulation program here refers to a self-developed simulation application

in C/C++ uploaded by the Websim administrator. Figure 27 shows how the Common

Gateway Interface (CGI), can be used to support the transfer of data from an HTML-

 59

page across the network and the starting of a CGI-script on a server. The CGI scripts

are commonly written in Perl but other programming languages could be used too.

Figure 27: CGI-based Web Connection for a Simulator

It is possible to use a simulation program with the CGI-interface for

simulation on the Web if the simulation program supports two properties:

(i) It must be possible to start the simulation program from a command line. Perl

scripts cannot "simulate" the "pushing of a button" in a GUI. The simulator

must support command lines like:

system (sim_model.exe param1 param2)

(ii) The simulator has to be able to accept the simulation model and simulation

parameters as a file and has to be able to write simulation results into a file,

which the CGI interface can return to a web-page.

If the simulation program supports the two properties mentioned above, then the user

may input simulation parameters into a form container on an HTML page, call a CGI

script and execute the simulation program. The following shows the steps in

CGI Script
(Perl)

Browser

Simulation
Program

HTTP
Web

Server

Form

HTML

HTML CGI

 60

performing the simulation over the web, referring to the tasks performed by the

"sim.cgi" CGI script in Websim.

Step 1: Enter simulation parameters

The first step in performing simulation over the web in Websim is to enter

some simulation parameters into a form on web-interface page (as shown in Figure

28). There are two categories of simulation parameters: simulation program input

parameters and graph setting parameters. The simulation program input parameters

are created by Websim administrator (as discussed in previous section). Example of

the graph setting parameters are graph size, graph title, plot styles.

Figure 28: Input simulation parameters via web-interface page

 61

 The web-interface file provides some INPUT and TEXTAREA containers.

For example:

<INPUT NAME="param1" VALUE="1" SIZE="8">

<INPUT NAME="param2" VALUE="2" SIZE="8">

<INPUT NAME="param3" VALUE="0.05" SIZE="8">

describes a data input field with a default value of zero and a size of 8 characters. If

the user writes the number 333 in this field and presses the start button the CGI

interface transfers the data to the server in the form

name=value&name=value ...

or in our example

param1=1, param2=2, param3=0.05

Then the script on the server is started to execute the simulation program. The script

takes the input data as the input parameter for the simulation program. The action

attribute in the form tag tells the server which script has to be used:

<FORM METHOD=POST

ACTION=”http://java.eng.upm.edu.my/Websimdemo/project/fourier/

sim.cgi”>

Step 2: Invoking simulation program

Once the user click on the "Run Simulation" button, the web server will

invoke the sim.cgi CGI script. The first task of the script is to call the invoke_simlib

subroutine.

if ($q->param('simulate') eq " Run Simulation ") {

 #Invoke simulation program

 &invoke_simlib();
 ...

}

The script firstly will call the invoke_simlib subroutine, invoking the

simulation program, with param1, param2 and param3 as the command line

 62

arguments. Recall that the simulation program is written in C/C++ which takes a

variable number of arguments. One example of the simulation program invoking

statement in the invoke_simlib subroutine is as follows:

system ("…/fourier.exe param1 param2 param3");

The simulation program will read the values of the three parameters and pass

them to the simulation model for processing. After the simulation work is done, the

simulation program will write the results to file "output.txt". This is defined in the

simulation program codes. The simulation program may have more than one output

file.

Step 3: Generating simulation results and graph settings files

The simulation program generates outputs and stores them in a text file. The

default simulation output file name is "output.txt". The format of the output text file

must be compatible with requirement of gnuplot plotting program. Besides, there is

another important file named "sim.dat", which is used to store commands and

settings that we send to gnuplot to execute. The settings are obtained from the input

parameters entered by the users. This function is implemented by the savefile

subroutine. The savefile subroutine creates a data file "sim.dat", consisting of

commands and settings that we send to gnuplot to execute.

sub savefile {

 ..

 $datafile = join ("", $cookie{'dir'}, "\\sim.dat");

 ..

 #Save the settings as file 'sim.dat'

 open (FILE, ">$datafile");

 #Read graph setting parameter from user

if ($q->param('plot_type') eq "2d") {
 $ptype = "plot";

 63

 } else {
 $ptype = "splot"; }

..

print FILE $ptype, " '", $plotfile, "' with ", $pstyle;

close (FILE);

}

The file specified by the variable $datafile is opened for output. All the graph

settings parameters entered by the user are processed, arranged and written to the

file, which must be of gnuplot compatible. The second last statement of the

subroutine shows how gnuplot should plot (2D, 3D, lines, bar, etc.) the simulation

results, specified by the variable $plotfile.

Presentation of Simulation Results

Now it is possible to generate the resulting HTML page with the simulation

results embedded together. It will be sent to the standard output, from which it is sent

back by the CGI interface to the WWW client. Graphical representation of the results

can be shown using Gnuplot or other external plotting programs.

First we shall explain the use of process id $$ to obtain a unique name for the

output graph.

 #Use process ID as temporary file name

 $process_id = abs($$);

 $output_gif = join ("",$process_id,".gif");

These variables are used to store the temporary files. The $$ variable refers to the

number of the process running the CGI script, as it does in a shell script. The number

is used to create a unique filename even if multiple instance of the scripts run. The

 64

use of the process number for this purpose is a trick that shell programmers have

used for decades.

The generation of simulation result as a graphical file is done by using a third

party program called Gnuplot. Using existing tools significantly reduce development

time because complex graphics capabilities do not need to be reinvented or

reprogrammed. One important feature that Gnuplot provides is batch execution,

meaning that the program can be executed by typing certain commands at system

prompt. The $plot_file variable specifies the gnuplot command with the full path of

the simulation data file.

$plot_file = join("","wgnuplot ",$cookie{'dir'},"\\sim.dat");
system $plot_file;

The system command executes the content of $plot_file. The Gnuplot

program execute the "sim.dat" data file and translates the ASCII input text file

generated by the simulation program into a GIF image file. The CGI scripts then

return an HTML page containing the generated image. Figure 29 shows a snapshot of

the final HTML page containing the output graph.

print "</TD><TD></TD>";

 65

Figure 29: Final HTML page containing the output graph

Security Issues

The Common Gateway Interface (CGI) specification defines a way for World

Wide Web servers to interact with query engines and information gateways.

However, CGI represents a powerful feature of many Web browsers. This feature

allows a Web server not only to provide information, but also to provide access to

the computing power of the server. It is important to note that a Web server that

supports CGI gateway engines also gives Web browser users a degree of control over

what the Web server does. Careful use of CGI can deliver interactive Web sites,

user-friendly information retrieval, and access to information not designed for the

World Wide Web. But careless use of CGI can and will compromise the security of

 66

the information provider. A CGI application implemented without due regard to

security issues will allow the Web browser user much more control over the Web

server than the programmer intended. If an organization is complacent on the

security of its World Wide Web server, it should expect abuse of its computing

facilities, downtime due to malicious attacks, and loss of information integrity of

confidentiality. [Eugene, 1996]

We refer mainly from the security measures suggested by Lincoln Stein, who

maintained the very famous ‘Lincoln Stein’s WWW Security FAQ’ website [Stein,

2000b]. Lincoln mentioned three unsafe practices that we should avoid when dealing

with CGI scripts:

(i) Avoid giving out too much information about our site and server host.

Although they can be used to create neat effects, scripts that leak system

information are to be avoided. For example, the "finger" command gives

would-be intruders valuable information on what daemons are running on

your system.

(ii) When coding in a compiled language like C, size of user input must be

limited.

A MAJOR source of security holes has been coding practices that allowed

character buffers to overflow when reading in user input. The buffer

overflows and crashes the program; in some circumstances the crash can be

exploited by the hacker to execute commands remotely. Of course, once we

read in the data, you should continue to make sure your buffers do not

overflow.

 67

(iii) Never pass unchecked remote user input to a shell command.

In Perl this includes system(), exec(), and piped open() functions as well as

the eval() function for invoking the Perl interpreter itself. In the various shells,

this includes the exec and eval commands. Backtick quotes, available in shell

interpreters and Perl for capturing the output of programs as text strings, are

also dangerous.

We also refer the security precautions implemented in [Morton, 1999] and

[Dincer and Fox, 1997]. Just like Websim, the server was configured in a very

careful manner in order not to hinder the security of the entire system.

In this thesis, we consider security as a very important issue because of

several server-side services provided by Websim, among them are:

• Availability of file upload features.

• Files to be written to the server.

• Execution of binary on the server.

The discussion of a comprehensive analysis of the security risks is beyond the scope

of this project, but our approach here is to anticipate potential attacks and implement

several strong security measures. Here we discuss the security precautions applied in

Websim, which are divided into two levels of implementations: the web server and

CGI scripts.

 68

Web Server Security

As a first precaution, web server authorization mechanism is used to restrict

the accesses to the system. The web authorization mechanism allows the

administrator to password protect the Websim root folder, where all the scripts are

installed. This is a very important security measure, which can only be implemented

by the administrator who first set up Websim on the web server. This makes it easier

to use the NTFS system file protection mechanisms to protect directories from other

users of the same system. In the common nobody approach, the access rights for all

the files should be set as readable and executable by the world, which make them

vulnerable to bad guys trying to steal homework solutions of other users.

Secondly, the web server is configured to not generate dynamically produced

indexes but return an error message instead. This is to prevent the entire contents of

the CGI directory to be displayed to the web user. Certain files may contain

important security information such as path and configuration information, which in

the hands of the hacker could bring much damage to our system.

CGI Script Security

Beyond the fact that web servers are insecure to begin with, web servers

make a bad situation worse by allowing users to take advantage of CGI scripts. [Sol,

2000]. There are 4 security measures implemented in the CGI scripts.

(i) First of all, Websim will only browse one level directory, which it assumes is

the top web directory for the site. There is no way for the users of the system

to go out of their directories by using any of the utilities provided by the

system. Commands such as delete/rename/edit file always manipulate only

 69

items in the respective simulation project folder. It will also browse only text,

html and CGI files and not other file format. This restriction prevents Websim

from being able to access any files outside the site where we install Websim.

(ii) Websim allows administrator user to save files in directories on the server.

Thus, access to Websim must be limited to those who have write permission

on those directories. At our installation, we achieve this security by requiring

the user to produce a user name and password when Websim is first started in

a browser. This is achieved by placing an access file (called passord.txt) in the

directory from which Websim runs; the access file specifies which users may

log on as administrator. A password file is generate containing the usernames

and associated passwords of all the valid users of the system. All the

documents directories and CGI script directories are protected. A user who

does not supply a matching username/password pair is not allowed to access

the project directories.

(iii) As for the third security measure, the input fields typed by the users are

checked against all kinds of special meta-characters, and rejected if

determined to be invalid. The only text data it accepts are file names and it

restricts file names to alphanumeric characters plus _ - ~ / . but no

whitespace. In a sense, the users of the system have fewer rights than they

would have with an actual account on the same system. A users also can only

run the executables (simulation program) on the particular simulation project

folder.

(iv) Finally, Websim will accept form data only from itself, by checking the

HTTP_REFERER variable (it generates its own web forms). If the referring

form is not itself, it will not process any form data submitted and will return

 70

only the default web page indexing the top of the site (the parent directory of

Websim's directory). This helps to prevent arbitrary form data from being

submitted, either with method POST through an alien form or with method

GET and the query string or path info.

"All data is fraudulent. All communications are attempted hacks.

All clients are thieves. Technology is only my first line of defense"

- morning litany for a Web Server Administrator (Selena Sol)

71

CHAPTER V

RESULTS AND DISCUSSION

Introduction

This chapter describes the experiments conducted to test, verify, analyse and

evaluate Websim. We also explain several Websim limitations and the proposed

solutions. The areas that have been evaluated are:

(i) Functionality and overhead of Websim.

(ii) Performance measurements of Websim using three simulation project

samples.

The main objective of the tests is to verify that Websim is able to function according

to the design and is sufficiently flexible to be implemented in a real network

environment. We will study Websim performance in terms of its simulation program

execution time and upload time.

 72

Experimental Setup

INTERNET

Websim
Server

Client A
(within same LAN)

Client B
(outside LAN)

Modem

Figure 30: Websim Experimental Setup Environment

Websim test setup environment is shown in Figure 30. It consists of a server

and two clients (A and B). Websim server is the most important component as this is

where all Websim applications were installed. Client A is a workstation located in an

adjacent room to the server, and it is connected to the Websim server via Ethernet

LAN with transmission capacity of 10 Mbps. Meanwhile, client B which is an

ordinary home-user computer, was located outside the campus LAN. To access

Websim, it used a modem dial-up connection to the Internet with transmission

capacity of 56 kbps for download and 33.6 for upload.

Websim was setup in a server computer, which has a HTTP server running

and has Perl interpreter installed. All the Websim program and script files were

stored in a web-enabled directory according to its original arrangement, as discussed

in Chapter III (page 48). Next we shall describe the configurations of all the three

computer machines.

 73

Machine Configuration

 All the machines used for this experiment are based on Intel Pentium series

processors, equipped with the basic hardware specifications and each has a 10 Mbps

network card. The OS is Microsoft Windows operating system and has either

Netscape Navigator and/or Internet Explorer web browser installed. Since Navigator

is part of our development testing tools, it is our preferred choice. Table 3 lists the

configurations for each machine:

Table 3: Configurations for Websim Server

Computer Name Sun

IP 202.184.18.11

DNS java.eng.upm.edu.my

CPU Intel Pentium II (450 MHz)

RAM 64 MB

OS Windows NT Server 4

Web Server Omnihttpd version 2.02

Perl Interpreter ActivePerl (Build 519)

Web Browser Netscape Navigator 4.7

The web server and Perl interpreter can be downloaded from the

OmniHTTPd homepage at http://www.omnicron.ab.ca/httpd/ and the

Activeperl homepage at http://www.ActiveState.com/ActivePerl/

respectively.

Table 4: Configurations for Client A

Computer Name Hpkayak800

IP Dynamically assigned.

CPU Intel Pentium III (450 MHz)

RAM 128 MB

OS Windows NT Workstation 5

Web Browser Netscape Navigator 4.73

 74

Table 5: Configurations for Client B

Computer Name none

IP Dynamically assigned

CPU Cyrix 166 MHz.

RAM 48 MB.

Modem 56.6 kbps external modem.

OS Windows 95

Web Browser Netscape Navigator 4.5

Functional Testing

This section describes the sets of tests on the functionality of Websim. This is

to ensure and verify that all Websim services (as discussed in Service Section, page

34) operates and performs as designed. The functionality of Websim was tested using

three different simulation modules:

(i) A Diode circuit

(ii) Fourier Series Simulation

(iii) Go Back N

A C/C++ simulation program was developed for each of the module. The full

source codes of the three programs are shown in Appendix A-1, A-2 and A-3. The

program is then compiled and turned into a binary file. Finally, each binary file was

uploaded to Websim server, and stored in different Websim folders.

The first two simulation modules show how Websim could be used as

computer assisted learning tool in the education sector; while the third simulation

project extended the functionality of Websim to act as an online simulation library.

 75

An online simulation library allows for a simulation program to be uploaded, and

could be accessed over the Internet. Next we shall give brief information on each of

the simulation program:

(i) A Diode Circuit

 This simulation module is used to generate and show the characteristic of a

semiconductor circuit. It proves that for any negative voltage, a very small negative

current will flow, while for positive voltages the current will be positive and increase

rapidly with v. We use the range1 and range2 variables to represent the voltage

domains, where range1 represent the minimum voltage, and range2 represent the

maximum voltage. By using different values for range1 and range2, we could see

from the graph of Websim plot, that the diode is practically Off for negative voltage

values, and On for positive ones. In other words, the diode acts as a rectifier. This

sample is taken from [Breiner and Biran, 1999]. An example of the output graph by

Websim is shown in Figure 31.

Figure 31: Characteristic of semiconductor diode

 76

(ii) Fourier Series Simulation

 The second program generates a truncated Fourier series, when given: (a)

amplitude of wave; (b) angular frequency; and (c) the increment points. By inserting

the three inputs, Websim will generate an output graph showing the three terms

approximation to the square wave. The graph obtained is shown in Figure 32. The

initial output graph that Websim generates might look rather ‘broken’, and the

resolution can be improved by having a smaller increment points. This sample is also

taken from [Breiner and Biran, 1999].

Figure 32: A truncated Fourier series

(iii) Go Back N

 The third simulation module is used to find the effect of timeout on GBN

throughput given: (a) percentage of packet losses; (b) percentage of check-sum error;

and (c) timeout range. The result from Websim graph (Figure 33) shows the effect of

timeout on Go Back N throughput for a packet size of 54 bytes. This simulation

program has been adapted and modified from [Sliman, 2000].

 77

Figure 33: Simulation output showing the GBN throughput for 54 bytes packet.

Performance Evaluation

This section discusses the performance of Websim by studying the time taken

to:

(i) Upload the simulation program from client machine to the Websim

server; and

(ii) Execute simulation program and return the output graph.

The simulation program refers to the binary executable file as discussed in previous

section. But since the size of the binary file for the Diode (112KB) and Fourier (103

KB) simulation program are almost the same, a larger binary file named ‘heavy.exe’

(232 KB) is used for the purpose of testing and evaluation.

The performance is evaluated under two scenarios:

(i) Based on the geographical distance between Websim server and client

machines.

 78

(ii) Based on the number of concurrent users accessing the Websim

server.

The results are presented next in the following tables. Table 6 shows the evaluation

results for Websim when the access is done at the same server machine.

Table 6: Websim performance when accessed from local machine

Simulation Program Upload Time (s) Execution time (s)

Name Size (KB) 1 ss. 2 ss. 5 ss 1 ss 2 ss 5 ss

Diode.exe 112 0.30 0.30 0.34 0.20 0.20 0.23

Fourier.exe 103 0.19 0.21 0.22

GBN.exe 70 0.29 0.30 0.31 0.22 0.23 0.26

Heavy.exe 232 0.32 0.32 0.45

ss = session(s)

 Table 6 shows that the upload and execution time are very insignificant. This

is because the Websim client accessing its services is located at the same machine,

thus all the processes are handled internally. The result obtained from this scenario is

regarded as the ideal result.

Table 7: Websim performance when accessed from a machine within the same
LAN

Simulation Program Upload Time (s) Execution time (s)

Name Size (KB) 1 ss 2 ss 5 ss 1 ss 2 ss 5 ss

Diode.exe 112 0.31 0.32 0.34 0.20 0.21 0.22

Fourier.exe 103 0.19 0.22 0.22

GBN.exe 70 0.29 0.29 0.30 0.2 0.21 0.22

Heavy.exe 232 0.30 0.33 0.37

*ss = session(s)

 Table 7 shows the performance when this simulation is done from another

machine – Client A, located within the same LAN as the Websim server. We notice

 79

that the results obtained from Table 2 are very much similar to those in Table 1. This

similarity is due to the availability of 10Mbps bandwidth within the Ethernet LAN.

This amount of bandwidth is sufficient to provide an almost ‘instant access’ between

client A and Websim server.

Table 8: Websim performance when accessed from another machine
outside campus network, via Internet.

Simulation Program Upload Time (s) Execution time (s)

Name Size (KB) 1 ss 2 ss 5 ss 1 ss 2 ss 5 ss

Diode.exe 112 23 51 178 5 6 15

Fourier.exe 103 4 5 9

GBN.exe 70 18 33 86 4 5 11

Heavy.exe 232 47 95 302

*ss = session(s)

 In comparison to the previous two tables, the upload and execution time

shown in Table 8 are much longer. One major factor contributing to this delay is the

limited bandwidth of our PSTN, where its maximum download bandwidth is

56.6kbps and 33.6 kbps for upload. But due to the large number of Internet users,

usually the average bandwidth available for each user is approximately 5 kbps only.

Another contributing factor for this poor result is the limited availability of system

resources such as amount of free memory and CPU utilization at the client C

machine.

Limitations and Proposed Solutions

 Since this thesis is a pioneer work, its original aim was just to develop a

prototype of web based simulation environment, combining CGI and Javascript

technologies to demonstrate its idea. Even though the main aims and its more

 80

specific objectives have been achieved, the final Websim prototype still require a

further research. It will be ready for open public usage once the following two crucial

limitations are overcome: Websim security and multi-user support.

Websim security

 Since Websim can write, execute and upload files to the server, security is a

very important issue. Even though we can provide security measures to prevent

unauthorized users or data from entering the system, Websim by default allows the

upload of binary executable file to the web server. Binary file format is chosen as the

simulation program file format because of its very fast execution time and compact

size. But it also prevents our CGI script to open and look at its content. A binary file

uploaded may contain some harmful system commands such as copy, delete, format,

etc. which may damage the Websim server. This is perhaps the most challenging

problem and major limitation of current version of Websim.

 To handle this problem, we would like to propose a system level mechanism

where a security “wrapper” application is put around the binary executable file.

When a binary file is first uploaded to the server, the wrapper application will

encapsulate the file, and check for the system commands to be executed by the

binary file. This can be achieved by using the wrapper application to load Websim

into a certain protected area of the system available memory. The application will be

executed at the protected memory space and its activities monitored by the wrapper

application. If any of the harmful commands such as copy, delete or format is

detected, the wrapper application will automatically delete the binary file.

 A second solution proposed is to develop a special purpose Perl module,

containing a special function that allows the safe execution of binary file. Unlike Perl

 81

commands such as open, system or exec, the module shall restricts the

operation of the binary file by allowing a minimum write/delete capability and

disallow it from referring to variable outside the working directory.

Multi-users supports

 Websim allow many users to access and perform simulation simultaneously.

Hence, in order to have a fair and optimum support to all users, a CGI classical

method have been implemented. We used variables based on the process ID – ($$ in

Perl) to create temporary files for each request. The $$ variable refers to the number

of the process running this program, as it does in a UNIX shell script. The number

obtained from $$ is used to create a unique filename, even if multiple instances of

the program run. The process identification is prefixed to each filename. We foresee

that this method will not be able to handle large amount of requests and complex

simulation programs which demand high CPU utilization.

 As a solution to this potential problem, we propose the use of multi-

threading. A thread is placeholder information associated with a single use of a

program that can handle multiple concurrent users. Thread makes it easier to

implement simulation by using the process interaction approach, where each thread

represents a process in the simulation environment. If multiple users are using the

same program or concurrent requests from other programs occur, a thread is created

and maintained for each of them. The thread allows a program to know which user is

being served as the program alternately gets re-entered on behalf of different users.

Most of today's operating systems provide support for both multitasking and

multithreading. They also allow multithreading within program processes so that the

 82

system is saved the overhead of creating a new process for each thread [whatis,

2000].

 However, at the moment of this thesis writing, the thread module provided in

the latest version of Activeperl (version 5.6) is still an experimental module. Users

are told to use at their own risks. According to the release notes, both the interface

and implementation are subject to change drastically. Perl 5.6 and later have the

beginnings of support for interpreter threads, which (when finished) is expected to be

significantly different from what is described in the current version [Activeperl,

2000].

Simulation Program

The simulation program is another significant limitation of this project.

Simulation program refers to the executable file created using C/C++ compiler.

When writing the simulation program in C/C++, we have to specify a fixed number

of input arguments and output the results to a text file. This gives rise to several

limitations, such as:

• Number of arguments could not be added/modified, and value of all the input

arguments have to be manually supplied. Hence everything is static.

• The results in the text file must follow the standard GNU Plot data files

format, such as specifying the first column as x and the second column as y.

 A script to test and auto-detect the input/output parameter of the simulation

program is proposed. The structure of the simulation program template too, can be

improved by creating some common and useful libraries, which can be included

easily in the simulation program. Besides the usage of C/C++ as the language for the

 83

simulation model, we may add the choice of the language by supporting other

interpreted language such as BASIC and FORTRAN. But this would require the

installation of the language interpreter at the server.

Conclusion

 The various tests conducted as discussed in this chapter verify the

achievement of Websim objectives. The functional testing shows how Websim could

be used as teaching tools, as well as an online simulation library. Three simulation

project samples were developed, and the tests conducted on them gave a very

encouraging and satisfactory result. The result also shows that its performance is best

when Websim server and its clients reside within the same LAN. There are many

external factors which directly or indirectly contribute to Websim performance, such

as number of concurrent sessions, distance between client and server, Websim server

available resource (available memory and CPU utilization), network bandwidth, etc.

 With the availability of newer technologies and better development tools for

Websim in the future, a superior results could be obtained. We further discuss the

limitations of this project and future works proposed for next generation of Websim

in the following chapter.

84

CHAPTER VI

CONCLUSION AND FUTURE WORKS

This chapter explains several identified areas where further research can be

done, in creating the next generation of Websim, and ends with a conclusion where

we describe various contributions of Websim and a summary of this thesis.

Future Works

 Various areas of Websim have been identified for future works. Areas which

are highlighted for improvement are essentials to enable Websim to work more

effectively and efficiently.

Additional Services

 This current version of Websim provides five services, which offer some

limited features sufficient to performing simulation over the web. There are many

features improvement of existing services that can be made. For example the site

manager may provide a visual file browsing tool similar to the Windows-based

applications that performs additional file operations such as copy, delete, rename,

 85

print, etc. Improvements can also be made to the text editor where we could provide

a multicolour and “what you see is what you get” text area display.

 Certain new tools can be introduced, such as a time clock to represent the

simulated time when the simulation is being carried out. The clock, measured in

second or millisecond will change on the screen as the simulation event takes place.

Secondly, we suggest Websim to provide a display that gives numerical values

statistics summarizing simulation and processor utilization data. The data provided

include the percentage of busy, overhead, and idle time, total count, volume of

messages sent and received, etc.

Database

 We may use a database to store the Websim users information, as well as the

simulation results. Access to the database will be implemented using CGI scripts. Its

goal is to accelerate a new presentation of older simulation results, and to allow

comparisons between results of different simulations runs of the same simulation

program. This task can be achieved using a Perl module called Win32::ODBC by

Roth Consulting, [Roth, 2000]. Win32::ODBC is a Perl 5 extension that provides

access to the Open DataBase Connectivity (ODBC). ODBC is an API that allows a

programmer to abstract a program from a database such as Microsoft Access, Sybase

and Oracle. ODBC currently exists on the Microsoft Windows platforms as well as

the Macintosh and Unix.

 86

Graphical User Interface

 Java and Javascript may be used to improve the interactivity and user

interface at the client site in addition to static components such as HTML. In the

current version of Websim, Javascript is mainly used to validate user’s input. But we

can extend its usage by using its ability as mentioned in Chapter II (page 22) to

provide more dynamism to the HTML pages.

 Meanwhile, Java and its library such as the Abstract Window Toolkit (AWT)

is an excellent resource for building GUI that we see in may commercial software

packages [Java, 2000]. It supports everything from creating buttons, menu, dialog

boxes, and can be used to display simple windows containing graph and statistical

charts too, as shown in Figure 34.

Figure 34: Example of components created using Java AWT class.

A later version of Java provides a more advanced library known as Swing, it has new

ability to create more sophisticated windows like components, such as colourful

buttons and scroll bars, that are independent of the windowing system for specific

operating system [Swing, 2000]. Some of the components that can be created using

 87

Swing is shown in Figure 35. The only limitation of Java is its speed, which would

slow down the performance of the system.

Figure 35: Example of several Java Swing Components

Animation and Visualization

 Animation and visualization helps students to better understand the

functionality and behaviour of a simulation model. There are two general approaches

to implement animation and visualization of the simulation results over the web. The

first approach is by using a Java based animation system, similar to the existing

Skopeo project [Skopeo, 1997], which utilizes Java’s graphic and multithreads

capabilities. In this project, the animation system is maintained on a host server.

Then, certain important components of the animation system are loaded at the client

side as applet. If the user closes the page, all the components at the client’s machine

are destroyed. This type of animation system is trace driven and needs a layout and

trace file to perform an animation.

 The second approach is by using the Virtual Reality Modelling Language

(VRML). VRML is a language for describing three-dimensional (3-D) image

 88

sequences and possible user interactions with them. Using VRML, we can build a

sequence of visual images into Web settings with which a user can interact by

viewing, moving, rotating, and otherwise interacting with an apparently 3-D scene.

For example, the simulation graphical results document may redirect the user to a

VRML file. When the browser recognizes this particular information type, it will

launch the VRML pluggin, allows us to construct 3-D geometry and have it rendered

in real time.

 However, the current problem with web-based animation programs and

visualization techniques is that they are not parameterised. There is no dynamic

binding to the program source code, which is to be visualized or animated. Whenever

the source example is modified or expanded, the animating sequence has to be

adapted manually. Researches have been carried out by designing a parameterised

animation tools, which is able to animate and visualize parts of the program or the

source automatically and dynamically, without external construction of visualization

sequences.

Figure 36: A 3-D image created in VRML

Websim Documentation and User Guide

 Documentation of Websim is built during various phases of development. We

propose a thorough and comprehensive documentation to be compiled and

 89

maintained for future use. It should be made available online, and kept in cross

platform compatible file formats such as HTML, PDF and Postscript The

documentation should contain all the facts and specification of Websim, its help

files, FAQ, tutorial, reference and user guide. The user guide would be specifically

written for the new user or Administrator of Websim. We also plan to implement

version control for Websim. Its goal is to show how one could use Websim as a tool

to integrate simulation program with the web. It would also show a variety of

features supported by Websim, and example of some basic operations.

Websim Contributions

 We describe here three major contributions of Websim, particularly to the

research and educational sectors. The first contribution is the ability of Websim to

produce a web-based simulator given a standalone simulation program. Websim is

able to receive the simulation program in executable format and provide a web

interface for it. This gives the flexibility and convenience of using the programming

language of choice for the simulation modeller., and to integrate it with the web.

 Secondly, Websim allows the storage of simulation program on a web server,

thus acting as an online store for simulation programs. This allows the sharing of

simulation program over the Internet to an exclusive user group or to the general

public. A user can access the simulator via any standard web browser without having

to install any software on the user machine. A set of services has been developed for

the administrator and users to perform simulation over the Internet.

 90

 Thirdly Websim could act as a teaching tool in school and universities. This

would be very useful especially for courses involving modelling and simulation. For

example lecturers could develop a simulation program related to his course, upload it

to Websim, and allow the students to perform the simulation over the Internet, hence

they could verify their understanding during lectures. In other words, Websim allows

teaching and learning to be done through the Internet, hence assisting students to

have a better understanding of certain topics or concepts in their learning.

Conclusion

 This thesis reports on the preliminary results of an on going effort to design

and develop a web-based simulation environment, to distribute simulation

experiments over the Internet. A prototype of that simulation environment called

Websim has been developed using CGI and Javascript. In this thesis, the architecture,

design, implementation and performance evaluation of Websim have been presented.

We believe that the use of WWW, CGI and Javascript as the enabling technologies

will provide a breakthrough for web-based simulation. First, the infrastructure

provided by the Internet obviates a multiprocessor hardware for simulation users, it is

already feasible to distribute simulation models over different hardware platforms

through the Internet. Secondly, the use of web browser on the client side makes the

application become fully portable and avoid steep learning curve.

 Future projects in the domain of web-based simulation environments have to

solve the open problems along with the research, designing and implementing

additionally required components of such an environment. The usage and acceptance

 91

of the presented system for commercial use is uncertain. For this application of web-

based simulation environment, questions about security and copyrights of the

simulation program are especially important, and need serious consideration.

