CHAPTER IV

SYSTEM IMPLEMENTATION

Introduction

In Websm, the adminidraior has the access to desgn and manage a
gmulaion sysgem, they ae granted with upload, change, ddete and other
adminidrative privileges Meanwhile, an ordinary user is only dlowed to execute the
gmulation sygsem and view the results (as shown in FHgure 11). After entering
Websm, the user may sdect a preinddled smulation project. Once smulaion is
done the results will be plotted. An independent plotting program, Gnuplot will
trandae the ASCII input text file generated by the smulation program into a GIF
image file. The CGI sipts then return an HTML page including the generated

imege. The overview of this sysem implementation is shown in Fgure 21.

sl

HTML
_____ Simulation
————— Program
HTML |4

Gnuplot

Figure 21: Block Diagram Of Welb.sm System Implementation

This chepter describes the implementations of Webam. It is organized into
three mgor sections. The fird section discusses the implementation tools used in
Websm devdopment. The next section provides the detalled description of the
goplications aspects. Here three important Websm gpplications are described in
detalls

(i) Generating Smulaion program web-interface.

(i) Performing Smuldion over the web; and

(iii) Presentation of amulation results.

The last section of this chepter focuses on the security issues of Websim.

I mplementation Tools

Webam utilizes CGlI technology and usss Peal as the implementation
language. The contralling CGI sipts, which coordinate the overdl activities of

Websm has been written in Pel. It is genedly used for two purposes daa

52

collection and interactive communication. This is achieved by usng Pel to generate
HTML. Pel is by far the mos widdy used language for CGI programming and
contains many powerful features, including:

Highly portable and reedily available.

Contains extremdy powerful dring manipulation operators, as wel as functions

to ded with binary data.

Makes cdling shdl commands very essy, and provides some useful equivdents

of certain system functions.

Ancther language tool used in Websm is the Javascript. It is used because of
its ability to interact with HTML forms and we would be able to perform verification
of a form before it is submitted. Javascript can adso perform preprocessng of input
deta, which can reduce the amount of data that must be tranamitted to the server. In
some cases, dient-sde Javascript can diminate the need for CGI scripts on the

sarver dtogether. On the other hand, Javascript and CGI work well together.

Presentation of smulation resuts in graphicd format is achieved by udng a
graph ploting utility named Gnuplot. Gnuplot is a command-line driven interactive
function plotting utility for UNIX, MSDOS, and VMS plaforms This graphicd
program dlows usars to visudize mahematicd functions and data Gnuplot supports
many different types of teminds plotters, and printers (including many color

devices, and pseudo-deviceslike LaTeX) and is able to generate a GIF file too.

Generating Smulation Program Web-Interface

We dwdl discuss the implementation issues rdaed to generating web
interface HTML file for the dmulation program in this section. Fre, the Websm
adminigrator must have a Websam-compatible smulation program in his locd had
dik. The smulaion progran mug follow a certan format required by Websm (as
mentioned in Smulation Program section, page 32), and compiled into a binary
format (.exe). Webdm does provide a template file for user to refer (as shown in
page 33). Once this is done Smulation program has to be deployed on the Websm
sver. Hee we present the steps in generating the webrinterface file for the

smulation program.

Step 1: Upload smulation program

Websm provides an upload dmulation program savice which may be
accesed from the man menu. When this savice is cdled, Webam asks for an
executable (.exe) file from the adminidrator and require him to specify the number
of input and output parameters for the smulation program (Figure 22). The HTML

tag to request for an upload file is shown below.

<INPUT TYPE="file" NAME="fil e_nane" SIZE="30">

Web-based Simulation Environment

STEP 1: Upload EXE File

* To use this form, enter a title and choosge a file to upload.
* File gizes are limited to 500K, larger files will return an Internal Server Error’

! File T]-’F'Eii & - CiC++ Compiled Executable Files

| Filename:iiG:‘-.kl‘-.t,l:‘-.t,emp‘-.lllatm.Exe Browse... I
i i =
| Parameters:!mputi‘t vi OutputFilE;I vi

Next I

Figure 22: Uploading Smulation Program

Step 2: Upload status natification

Once the next button is dicked, the script tries to upload the loca Smulation
program into the respective project folder. We first create a varidble $sinfile to store
the gmulaion program fileés full pah. The file is opened for output usng the
MYFILE file handle. The content of the uploaded file $file name is read and printed
to the file handle. Once this process is completed, we dose the file handle and the

fileis consdered to be successfully uploaded to the server.

$sinfile = join ("", $project{"'dir'}, "\\simexe");
open (MYFILE, ">$sinfile") || die $!;

whi | e(read($fil e_nane, $dat a, 1024))

{ print MYFILE $dat a;

}
cl ose (MYFILE);

55

If the smulation program is successfully uploaded to the server, a confirmation

message will be displayed on the screen, as shown in Fgure 23.

Web-based Simulation Environment

STEP 2: File Successfully Uploaded

File Hame: G:hkl\to\tenpWatm.exe
has been successfully uploaded to the serwver E:\projectiwebsim'demohprojectitest.

To the =zerwer.

Hext I

Figure 23: Confirmation on Successful Smulaion Program Upload

Step 3: Enter webrinterface settings

Here the adminidrator has to pecify the web interface settings such as
project titles description of project, name of smulaion inputs ec. (as shown in
Fgure 24). The number of text fidds for input parameters is determined in dep 1,
and the script to peform this task is shown bdow. The $in variable sore the number

of input parameters and input$n variable is used to keep the name of the parameter.

#$i n = nunber of input paraneter
for ($n=1; $n<=$in; $n++) {
$temp = $g->paran(’'input'.$n);
print <<HTM;
Param $n: <input type="text" name="input $n"
val ue="$tenp" si ze="25">

HTML

56

All the data collected here will be used to create a HTML file, which will act

as the web-interface for the smulation program.

= Websim - Simulation Settings - Hetscape
File Edit ¥ew Go Communicator Help
T ';“tv Bookmarks)!; Ll:u:a!;il:un;ing.upm.edu.my.n’deml:u.-’wizardlcgi j ﬁv Wihat's Felated ﬂ
F .:::::::::::::fh .::::'f
Web-based Simulation Environment ~
STEP 3: Generate HTML Interface
FProject Title: Instruction:
|
* One:
. * Twuo:
Aot * Three:
I * Fourn
* Five:
Description:
* _IJ
Erter name of INPUT parameters: Erter description of QUTRPUT files:
Faram. 1:' Clutput'i:l
Faram. Z: i Output 2: |
Faram. 3: I
Faram. &: i
Creak HTMLFE | Reset | Li

Figure 24: Form Collecting Information for Web-Interface File

Step 4: Preview and finalize settings

Once dl the sdting form fidds ae entered, the user has to click on the
"Creste HTML File' button to create a new HTML interface file. Webdam provides a
preview function for users to preview the settings made earlier by just dicking on the

"Preview button. When this button is pressed, a new window gopears showing the

57

find webinterface filee The find webinterface file contans not only the project
name and destriptions, but dso some output grgph settings such as graph Sze, graph
titte, graph type, etc. At the bottom of the interface file is found a "Run Smulation”
button used to trigger a script, which will execute the smulaion program. Figure 25

shows a sngpshot of the preview page.

- Websim - Simulation Settings - Netscape

File Edit Wiew Go Communicator Help
= 4‘+Ennkmmks M Lu:u:al'n:un:'lng.upm.eu:lu.m_l,la"demna"wizardicgi :I@"What's Related ﬂ

Click to preview the HThL page:

Prevkw I

¥ Websim: Wireless ATM Simulator - Netscape

Project Title: Wireless ATM Simulator

!'[i]irel e=xx ATM Simmlator

o By: Tan Kee Leong

iTa.n Kee Leong

Testing testing

Description:

Testing testing

Input

| XX I
Y¥y I
Erter name of INFUT parameters:
Faram. 1; I?ﬂﬂi ririlr I
Faram. 2: IYE-":-’
Faram. 3; |==5 IlerT'er'lj,l' I

FParam. 4: id-‘ﬂfm}'

Output

Creake HTE

Figure 25. Preview of HTML Interface File

58

If a user chooses to further dter or edit certan sdttings, he may do so by
entering the new settings on respective fidds and dick on the "Creste HTML Fil€e"
button agan. Once siidied, the usr has to dick on the "Fnish" button to
permanently save the file in the smulation project folder. The file is saved as a
HTML file with the name "indexhtm" o that it becomes the default page of the
gmulaion project folder. Ladly, the URL of the smulaion proect folder is

digolayed (Figure 26).

Y Wehszim - Simulation Settings - Netscape

File Edt Miew Go Communicator Help
Tl _ﬁt'EDkaar_kg J;_ Lu:u:atiu:un:.!http:.-".-"u:u:.eng.upm.edu.m_l,l.-"u:lemu:u.-"wizard#cgi _v_J @that's Related ﬂ

Web-based Simulation Environment

STEP 4: Finish

Congratulations!
You hawve successfully crested a Web-based Simulation Project.

To run simulation CLICK HERE

Ta return to Main Menu CLICK HERE

Figure 26: Display URL of Smulation Project Folder to User

Performing Smulation over the Web

Among the centrd components of Webam are the intefaces to smulation
program. Smulaion program here refers to a sdf-devdoped smulaion gpplication
in C/C++ uploaded by the Webdm adminidrator. Figure 27 shows how the Common

Gaeway Interface (CGl), can be usad to support the transfer of data from an HTML-

59

page across the network and the darting of a CGl-script on a server. The CGl scripts

are commonly written in Perl but other programming languages could be used too.

Browser Formr HTTP
Web
< Server
HTML
HTML l TCGI
Simulation CGI Script

«— (Perl)

Program

Figure 27: CGl-basad Web Connection for a Smulator

It is possble to use a dmulaion progran with the CGl-interface for
amulation on the Web if the smulation program supports two properties.
() It must be posshle to dat the amulaion program from a command line. Perl
ripts cannot "dmulae’ the "pushing of a button” in a GUI. The amulator

mugt support command lineslike

system (si m nodel . exe paraml parant)
(i) The dmulaor has to be aile to accept the Imulaion modd and Smulation
paameters as a file and has to be able to write Smulation results into a file,

which the CGl interface can return to aweb-page.

If the smulation program supports the two properties mentioned above, then the user
may input Smulation parameters into a form container on an HTML page, cdl a CGl

sript and execute the smulaion program. The following shows the deps in

60

performing the dmulation over the web, refaring to the tasks peformed by the

"dm.cgi” CGI script in Webam.

Step 1: Enter Smulation parameters

The fird dep in peforming Smulaion over the web in Webam is to enter
some dmulaion parameters into a form on web-interface page (as shown in Figure
28). There are two categories of Smuldion paramelers. Smulaion program input
paranges and grgph setting paameters. The smulaion program input parameters
ae crested by Webam adminigraior (as discussed in previous section). Example of

the graph setting parameters are graph size, greph title, plot styles

7 wWebsim: Fourier Series - Netscape

File Edit View Go Communicator Help

* Bookrarks ‘.!,(anatiu:un:Ihttp:a’.-’iava.eng.upm.edu.m_l,J.n"websimdemnfprniecta’fnurierf _:I ‘«Eﬁ' T \wWhat's Related ﬂ
=

T TITaY- T e TUNTL ST TUOTET 2 ETTE S TS BT ITES T TTTRT

Simulatien Input

Amplitude ofwave (default 1.0) il
n, number of pi (default 2.0) iz

Mo, of points (default 0.045) 0.05

Output

¥ Truncated Fourier Series

Flot Flot Type : #oap O oap

Plot Styles : |lines = -

General Set Plot Size: ¥ scale i3UU ¥ azcale |3UU

Border : @ oon O oftf

Figure 28: Input Smulation parameters via welrinterface page

6l

The webrinterface file provides some INPUT and TEXTAREA contaners.

For example:

<I NPUT NAME="paraml" VALUE="1" SIZE="8">
<I NPUT NAME="paranR" VALUE="2" SIZE="8">
<I NPUT NAME="paran8" VALUE="0.05" SIZE="8">

describes a data input fidd with a default value of zero and a Sze of 8 characters. If
the user writes the number 333 in this fidd and presses the dat button the CGI
interface transfers the data to the server in the form

nane=val ue&nane=val ue ...
or in our example
paraml=1, paran=2, paran8=0.05
Then the stript on the server is sarted to execute the smulaion program. The script
takes the input data as the input parameter for the smulation program. The action

attribute in the form tag tells the server which script has to be used:

<FORM METHOD=POST
ACTI ON="ht t p: // j ava. eng. upm edu. nmy/ Websi ndeno/ proj ect/fouri er/

simcgi”>

Step 2: Invoking smulation program
Once the usxr dick on the "Run Smulation® button, the web server will
invoke the sm.cgi CGl stript. The firg task of the script is to cdl the invoke simlib

subroutine.

if ($q->paranm('simulate') eq " Run Simulation ") {
#l nvoke sinmul ati on program
& nvoke_simib();

}
The gxipt firdly will cdl the invoke simlib subrouting, invoking the

gmulaion program, with paraml, paam2 and paam3 a the command line

62

aguments. Recdl tha the smulaion program is written in C/C++ which tekes a
vaidble number of aguments One example of the Smuldion program invoking
datement in the invoke_simlib subroutineis asfollows

system ("./fourier.exe paranml paran? paran8");

The amulation program will read the vaues of the three parameters and pass
them to the smulaion modd for processng. After the smulaion work is done the
gmulation program will write the results to file "output.txt”. This is defined in the
dmulaion program codes. The smulaion program may have more than one output

file

Step 3: Generating smulation results and graph settingsfiles

The dmulation program generates outputs and gores them in a text file The
default smulaion output file name is "output.txt”. The format of the output text file
mugt be compaible with requirement of gnuplot plotting program. Besdes there is
another important file named “"sm.dat", which is used to dore commands and
sHtings that we send to gnuplot to execute. The settings are obtained from the input
paangeas entered by the usars. This function is implemented by the savefile
ubroutine, The savefile subroutine creates a data file "sm.dat”, condging of

commands and settings that we send to gnuplot to execute.

sub savefile {
$datafile = join ("", $cookie{'dir'}, "\\simdat");

#Save the settings as file 'simdat'

open (FILE, ">$datafile");

#Read graph setting paranmeter from user

if ($qg->paran(’'plot_type') eq "2d") {
$ptype = "plot";

} else {
$ptype = "splot"; }

print FILE $ptype, " '", Splotfile, "" with ", $pstyle;
cl ose (FILE);

}
The file specified by the variadble $datafile is opened for output. All the graph

stings parameters entered by the user are processed, arranged and written to the
file which mus be of gnuplot compatible. The second last datement of the
subroutine shows how gnuplot should plot (2D, 3D, lines bar, etc) the smulaion

results, specified by the variable $plotfile.
Presentation of Smulation Results

Now it is possble to generate the resulting HTML page with the smulation
results embedded together. 1t will be sent to the standard output, from which it is sert
back by the CGI interface to the WWW dient. Graphicd representation of the results
can be shown usng Gnuplot or other externd plotting programs.

Firs we shdl explain the use of process id $$ to obtain a unique name for the

output graph.

#Use process ID as tenporary file nane
$process_id = abs($9$);
$output _gif =join ("",$process_id,".qgif");

These variables are used to dtore the temporary files The $$ vaiable refers to the
number of the process running the CGI stript, as it does in a shell script. The number

is usd to creste a unique filename even if multiple indance of the scripts run. The

64

use of the process number for this purpose is a trick that shell programmers have

used for decades.

The generation of smulaion result as a gragphicd file is done by usng a third
paty program cadled Gnuplot. Usng exiding tools dgnificantly reduce development
time because complex grgphics cgpabiliies do not need to be renvented or
reprogranmed. One important festure that Gnuplot provides is baich execution,
meaning tha the progran can be executed by typing certan commands & sysem
prompt. The $plot_file vaiable specifies the gnuplot command with the full path of

the amulation datafile

$plot file = join("","wgnuplot ", $cookie{ 'dir'},"\\simdat");
system $plot _file;

The sysem command executes the content of $plot file. The Gnuplot
program execute the "dmdat” daa file and trandaes the ASCIl input text file
generated by the dmulaion program into a GIF image file The CGI scripts then
return an HTML page containing the generated image. Figure 29 shows a sngpshot of
the find HTML page containing the output graph.

print "</ TD><TD><I MG SRC=\"", $output_gif, "\"BORDER=1></ TD>";

Websim - Netscape

GNU-Plot Setting: Preview

Here are the current settings:

Three-term approximation of the sguare wave
input1 -= 1 1.5 T T e NOTES
: DL ARE s —
inputZ -=2 : ! : i
input? -= 0.05 i i X | * To change the
output -= outputt i et | 7 e A zettings, click
plot_type -» 2d BACK and
plot_styles -= lines re-configure.
size_x -= 300 LVAae ot L e e Al e e SRl e
Size_y-= 300 * [|fthe graph
border -= on R OO Lo AP, TR (ol DRI e TRCO [image is the
alto_x -= on B R I T = s I zame az
auto_y-* on previous, press
log_y -» off VNI 1 .00 0 0 9 o R RELDAD.
grid -= an 3
title -» Three-tarm approximation of the * Tosave the
square wave S IO N R,) LI 7 WL file, right-click
label_w-=1 ! H Y i 1 H H and choosze
Izbel_y -») : : : : : : ; SAVE IMAGE
simulate -= Run Simulation 4.5 H L H 1 H H 1 A
S B O 1Y ¥ S ot S I s LR
i

Far Mee Leong

Wiebsim Home Fage

Figure 29: Find HTML page containing the output graph

Security Issues

The Common Gaeway Interface (CGl) specification defines a way for World
Wide Web savers to interact with query engines and information gateways.
However, CGl represents a powerful feature of many Web browsers. This fesature
dlows a Web saver not only to provide information, but dso to provide access to
the computing power of the server. It is important to note that a Web sarver that
supports CGl gateway engines dso gives Web browser usars a degree of control over
what the Web sarver does. Careful use of CGl can ddiver interactive Web Stes,
user-friendly information retrieva, and access to information not desgned for the

World Wide Web. But cardess use of CGl can and will compromise the security of

66

the information provide. A CGlI agpplication implemented without due regard to

security issues will dlow the Web browser user much more control over the Web

sver than the programmer intended. If an organization is complacent on the

security of its World Wide Web sarver, it should expect abuse of its computing

fadlities downtime due to mdicious atacks and loss of information integrity of

corfidentiality. [Eugene, 1996]

We refer manly from the security measures suggested by Lincoln Stein, who

mantaned the vey famous ‘Lincoln Stein's WWW Security FAQ webdte [Sten,

2000b]. Lincoln mentioned three unsafe practices that we should avoid when deding

with CGI scripts:

()

(i)

Avoid giving out too much information about our ste and server host.
Although they can be used to creste neat effects, scripts that lesk system
information ae to be avoided. For example the "finge™ command gives
would-be intruders vauable information on what daemons ae running on
your system.

When coding in a compiled language like C, size of user input must be
limited.

A MAJOR source of security holes has been coding practices that alowed
character buffers to overflow when reading in user input. The buffer
overflows and crashes the program; in some circumstances the crash can be
exploited by the hacker to execute commands remotdy. Of course, once we
reed in the data, you should continue to make sure your buffers do not

overflow.

74

(iii) Never passunchecked remote user input to a shell command.
In Perl this indudes system(), exec(), and piped open() functions as wel as
the evd() function for invoking the Perl interpreter itsdf. In the various shells
this includes the exec and evd commands. Backtick quotes, avalable in shdl
interpreters and Perl for capturing the output of programs as text drings, ae

aso dangerous.

We dso refer the security precautions implemented in [Morton, 1999] and
[Dincer and Fox, 1997]. Jugt like Websm, the saver was configured in a very

careful manner in order not to hinder the security of the entire system.

In this thess, we consder security as a very important issue because of
severa server-dde sarvices provided by Websm, among them are:
Availability of file upload festures.
Files to be written to the server.

Execution of binary on the server.

The discusson of a comprehengve andyss of the security risks is beyond the scope
of this project, but our goproach here is to anticipate potentid atacks and implement
severd drong security messures. Here we discuss the security precautions gpplied in
Webam, which are divided into two leveds of implementations the web server and

CGl scripts

Web Server Security

As a firg precaution, web server authorizetion mechanism is used to redrict
the acceses to the sysem. The web authorization mechanism dlows the
adminigrator to password protect the Websm root folder, where dl the scripts are
inddled. This is a very important security measure, which can only be implemented
by the administrator who firsg st up Websm on the web sarver. This makes it eader
to use the NTFS sysem file protection mechanisms to protect directories from other
users of the same sysem. In the common nobody approach, the access rights for Al
the files should be st as readable and executeble by the world, which make them
vulnerable to bad guys trying to sted homework solutions of other users.

Secondly, the web server is configured to not generate dynamicdly produced
indexes but return an error message indead. This is to prevent the entire contents of
the CGl directory to be diglayed to the web user. Cetan files may contan
important security information such as path and configuration information, which in

the hands of the hacker could bring much damage to our system.

CGI Script Security
Beyond the fact that web sarvers are insecure to begin with, web servers
make a bad dtuaion worse by dlowing usars to take advantage of CGl scripts. [Sdl,

2000]. There are 4 security measures implemented in the CGI scripts.

() Firg of dl, Webam will only browse one level directory, which it assumes is
the top web directory for the Ste. There is no way for the users of the system
to go out of therr directories by usng any of the utilities provided by the

sysem. Commands such as ddeterenameledit file dways manipulate only

(ii)

(iii)

(iv)

69

items in the respective smulation project folder. It will dso browse only text,
html and CGl files and not other file format. This redriction prevents Webam
from being able to access any files outsde the Ste where we ingtal Websm.

Websm dlows adminigrator user to save files in directories on the server.
Thus, access to Webam mugt be limited to those who have write permisson
on those directories. At our indalaion, we achieve this security by requiring
the user to produce a usr name and password when Websm is fird sarted in
a browser. This is achieved by placing an access file (cdled passord.txt) in the
directory from which Websm runs the access file specifies which users may
log on as adminigrator. A password file is generate contaning the usernames
and asociaed passwords of dl the vaid users of the sygem. All the
documents directories and CGl script directories are protected. A user who
does not supply a matching username/password par is not dlowed to access
the project directories.

As for the third security messure, the input fields typed by the users are
checked agang 4dl kinds of gpedd meacharacters, and reected if
determined to be invaid. The only text data it accepts are file names and it
regricts file names to dphanumeric characters plus _ - ~ /. but no
whitespace. In a sense, the usars of the sysem have fewer rights than they
would have with an actud account on the same sysem. A usars dso can only
run the executables (Smulation program) on the paticular dmulaion project
folder.

Fndly, Webam will accept form data only from itsdf, by checking the
HTTP_REFERER vaiable (it generates its own web forms). If the referring

form is not itsdf, it will not process any form data submitted and will return

70

only the default web page indexing the top of the dte (the parent directory of
Websm's directory). This hdps to prevent ahbitrary form data from beng
ubmitted, ather with method POST through an dien form or with method

GET and the query gring or path info.

"All data is fraudulent. All communications are attempted hacks.
All clients are thieves. Technology is only my first line of defense”

- morning litany for a Web Server Administrator (Sdlena Sol)

CHAPTER YV

RESULTSAND DISCUSS ON

Introduction

This chapter describes the experiments conducted to tedt, verify, andyse and
evduate Websm. We dso explan severd Websm limitaions and the proposed
solutions. The areas that have been evauated are:

() Functiondity and overhead of Webam.

(i) Peformance meassurements of Websm using three smulaion project

samples.

The main objective of the teds is to verify tha Websam is able to function according
to the dedgn and is auffidently flexible to be implemented in a red network
environment. We will sudy Websm peformance in terms of its smulaion program

execution time and upload time.

71

Experimental Setup

Websim Client A
Server E] (within same LAN)
=
=\ —_—

[I%]E\'l [I%‘]\:'I =

Client B
(outside LAN)

INTERNET

Figure 30: Websm Expeimenta Setup Environment

Websm test sgtup environment is shown in Figure 30. It congds of a server
and two dients (A and B). Webdm server is the mogt important component as this is
where dl Websm applications were inddled. Client A is a workdaion located in an
adjacent room to the server, and it is connected to the Websm sarver via Ethernet
LAN with transmisson capecity of 10 Mbps Meawhile dient B which is an
ordinay home-user computer, was located outsde the campus LAN. To access
Websm, it used a modem did-up connection to the Internet with trangmisson

cgpacity of 56 kbps for download and 33.6 for upload.

Websm was setup in a server computer, which has a HTTP sarver running
and has Pel interpreter ingdled. All the Websm program and soript files were
dored in a web-endbled directory according to its origind arangement, as discussed
in Chapter 111 (page 48). Next we shdl describe the configurations of dl the three

computer machines.

Machine Configuration

All the machines used for this experiment are based on Inte Pentium series
processors, equipped with the basc hardware specifications and each has a 10 Mbps
network card. The OS is Microsoft Windows operating sysem and has dther
Netscgpe Navigator and/or Internet Explorer web browser ingdled. Since Navigator
is pat of our devdopment testing tools it is our preferred choice Table 3 ligs the

configurations for each machine:

Teble 3: Configurations for Welbsm Server

Computer Name | Sun

P 202.184.18.11

DNS javaeng.upm.edu.my

CPU Intel Pentium 11 (450 MHz)
RAM 64 MB

(O Windows NT Server 4
Web Server Omnihttpd verson 2.02
Perl Interpreter | ActivePerl (Build 519)
Web Browser Netscape Navigator 4.7

The web save and Pel interpreter can be downloaded from the
OmniHTTPd homepage & htt p: // www. omrmi cron. ab. ca/ httpd/ and the
Activeperl homepage a http://ww. ActiveState. com ActivePerl/
respectively.

Table 4: Configurations for Client A
Computer Name | Hpkayak800

IP Dynamicdly assgned.

CPU Intel Pentium 111 (450 MH2)
RAM 128MB

oS Windows NT Workgation 5

Web Browser Netscape Navigator 4.73

74

Table 5: Configurationsfor Client B

Computer Name | none

IP Dynamicdly assgned
CPU Cyrix 166 MHz.

RAM 48 MB.

Modem 56.6 kbyps externa modem.
os Windows 95

Web Browser Netscape Navigator 4.5

Functional Testing

This section describes the sets of tests on the functiondity of Websm. This is
to ensure and verify that al Webam sarvices (as discussed in Service Section, page
34) operates and pearforms as designed. The functiondity of Websm was tested using
three different smulation modules

@i) A Diode drcuit

(i) Fourier Series Smulation

(i) GoBakN

A C/C++ dgmulation program was developed for each of the module. The full
source codes of the three programs are shown in Appendix A-1, A-2 and A-3. The
program is then compiled and turned into a binary file Findly, each binary file was

uploaded to Websm sarver, and stored in different Websm folders

The fird two smulaion modules show how Websm could be used as
computer assded learning tool in the educaion sector; while the third smulation

project extended the functiondity of Websm to act as an online smulaion library.

I6)

An online dmulation library dlows for a smulaion program to be uploaded, and
could be accessed over the Internet. Next we shdl give brief information on each of

the asmulaion program:

(i) A Diode Circuit

This dmulaion module is used to generate and show the characteritic of a
semiconductor caircuit. It proves thet for any negative voltage, a very smdl negdive
current will flow, while for pogtive voltages the current will be postive and increaese
rapidy with v. We use the rangel and range2 vaiables to represent the voltage
domains, where rangel represent the minimum voltage, and range2 represent the
maximum voltage. By using different vadues for rangel and range2, we could see
from the graph of Websm plaot, that the diode is practicdly Off for negetive voltage
vaues, and On for pogtive ones. In other words, the diode acts as a rectifier. This
sample is teken from [Breiner and Biran, 1999]. An example of the output graph by

Webgm is shown in Fgure 31.

A diode circuit

Fe-006

TR L —

BEe-00G

Te-006

de-006

Je-006

Ze-006

Current i, mA

le-006

0

—19—0':'6 i Il 1 i Il
=0.06 =004 —0.02 0 0.0Z 0.04 0.06

Voltage v, W

Figure 31: Characteridtic of semiconductor diode

76

(i) Fourier Series Smulation

The second program generates a trunceted Fourier series, when given: (a)
amplitude of wave (b) angular frequency; and (¢) the increment points By insarting
the three inputs, Websm will generate an output gragph showing the three terms
goproximation to the square wave. The grgph obtained is shown in Fgure 32. The
initid output grgph tha Websm generates might look rather ‘broken’, and the
resolution can be improved by having a smdler increment points This sample is dso

taken from [Breiner and Biran, 1999).

Three-term approximation of sguare wave
15 T T T T T T
i i
M P
Tl e ST S Nned SR ACRL RO
= phdsbdasahi it
B ;
6.5 SR B
A
1.5 : . : : . : .
-2 =454 =058 0 05 L 415 2
t

Figure 32: A truncated Fourier series

(i) GoBack N

The third gmulation module is used to find the effect of timeout on GBN
throughput given: (a) percentage of packet losses, (b) percentage of check-sum error;
and (¢) timeout range. The rexult from Webam grgph (Figure 33) shows the effect of
timeout on Go Back N throughput for a packet sze of 54 bytes This smulaion

program has been adgpted and modified from [Simean, 2000].

GBM throughput for 54 buytes packet

R —

--

Timeout tmzec)

..

Throughput Chutes)

Figure 33: Smulaion output showing the GBN throughput for 54 bytes packet.

Perfor mance Evaluation

This section discusses the performance of Webam by studying the time taken

to:

() Upload the smulaion program from dient mechine to the Webdam
server; and

(i) Execute smulation program and return the output graph.

The gmulation program refers to the binary executeble file as discussed in previous
section. But dnce the sze of the binary file for the Diode (112KB) and Fourier (103
KB) smulatiion program are dmog the same, a larger binary file named ‘heavy.exe

(232 KB) isusad for the purpose of tegting and evaluation.

The performance is evaluated under two scenarios:

) Based on the geogrephicd digtance between Websm sarver and client
meachines.

78

(i) Based on the number of concurrent users accessing the Websm

server.

The reaults are presented next in the following tables. Table 6 shows the evauation

results for Websm when the access is done at the same server machine.

Table6: Websam performance when accessed from loca machine

Smulation Program Upload Time () Execution time (s)

Name Size (KB) 1ss. 2ss. 5ss 1ss 2ss 5ss
Diode.exe 112 0.30 0.30 034 0.20 0.20 0.23
Fourier.exe 103 0.19 021 022
GBN.exe 70 0.29 0.30 031 0.22 0.23 0.26
Heavy.exe 232 0.32 032 0.45

sS=sess0n(9)

Table 6 shows that the upload ad execution time are very indgnificant. This
is because the Websm dlient accessing its sarvices is located a the same machine,
thus dl the processes are handled interndly. The result obtained from this scenario is

regarded asthe ided result.

Table7: Webam performance when accessed from a machine within the same

LAN
Smulation Program Upload Time (s) Execution time (s)
Name Sze(KB) 1ss 2ss 5ss 1ss 2ss 5ss
Diode.exe 112 031 0.32 034 0.20 021 022
Fourier.exe 103 0.19 022 0.22
GBN.exe 70 0.29 0.29 0.30 0.2 021 0.22
Heavy.exe 232 0.30 0.33 0.37

*ss=ses30n(9)
Table 7 shows the performance when this smulation is done from another

machine — Client A, located within the same LAN as the Webdam server. We notice

7

that the results obtained from Table 2 are very much smilar to those in Table 1. This
amilaity is due to the avaldbility of 10Mbps bandwidth within the Ethernet LAN.
This amount of bandwidth is sufficient to provide an dmog ‘ingtant access between

dient A and Websm server.

Table8: Websm performance when accessed from another machine
outsde campus network, via Internet.

Smulation Program Upload Time (s) Execution time (9)
Name Size(KB) 1ss 2ss 5ss 1ss 2ss 5ss
Diode.exe 112 23 51 178 5 6 15
Fourier.exe 103 4 5 9
GBN.exe 70 18 33 86 4 5 11
Heavy.exe 232 47 95 302

*ss= sesson(s)

In comparison to the previous two tables the upload and execution time
shown in Table 8 are much longer. One mgor factor contributing to this dday is the
limited benowidth of our PSTN, whee its maximum download bandwidth is
56.6kbps and 33.6 kbps for upload. But due to the large number of Internet users
usudly the average bandwidth avalable for each user is gpproximady 5 kbps only.
Another contributing factor for this poor result is the limited avalability of sysem
resources such as amount of free memory and CPU utilization a the dient C

machine

Limitations and Proposed Solutions

Since this thess is a pioneer work, its origind am was jus to devedop a
protaype of web based gmulaion environment, combining CGlI and Javascript

technologies to demondrate its idea Even though the man ams and its more

goecific objectives have been achieved, the find Websm prototype ill require a
further research. It will be ready for open public usage once the following two crucid

limitations are overcome: Webam security and multi-user support.

Websm security

Since Websm can write, execute and upload files to the server, security is a
vay important issue Even though we can provide security messures to prevent
unauthorized users or daa from entering the sysem, Websm by default dlows the
upload of binary executable file to the web sarver. Binary file format is chosen as the
gmulaion program file format because of its very fast execution time and compact
Sze But it dso prevents our CGl stript to open and look at its content. A binary file
uploaded may contan some harmful sysem commands such as copy, ddete, formd,
efc. which may damage the Webam saver. This is perhaps the mogst chdlenging
problem and mgor limitation of current verson of Websm.

To handle this problem, we would like to propose a sysem leve mechaniam
where a security “wrgpper” goplication is put around the binary executable file.
When a binary file is firg uploaded to the sarver, the wrgpper goplicaion will
encgpulate the file, and check for the sygsem commands to be executed by the
binary file This can be achieved by usng the wrgpper goplication to load Websm
into a certain protected area of the system avalable memory. The gpplication will be
executed a the protected memory space and its activities monitored by the wrapper
goplication. If any of the hamful commands such as copy, ddete or format is
detected, the wrapper gpplication will autometicaly delete the binary file.

A soond solution proposed is to devdop a specid purpose Perl module,

containing a specid function that dlows the safe execution of binary file. Unlike Perl

81

commends such as open, system or exec, the module shdl redricts the
operation of the binay file by dlowing a minimum write/ddete cgpability and

didlow it from referring to variable outsde the working directory.

Multi-user s supports

Websm dlow many usars to access and peform dmulaion sSmultaneoudy.
Hence, in order to have a far and optimum support to dl users a CGl dasscd
method have been implemented. We used variables based on the process ID — ($$in
Perl) to create temporary files for each request. The 3 varigble refers to the umber
of the process running this program, as it does in a UNIX shel script. The number
obtained from $$ is used to creste a unique filename, even if multiple ingances of
the program run. The process identification is prefixed to each filename. We foresee
that this method will not be ale to handle large amount of requests and complex
smulation programs which demand high CPU utilizetion.

As a lution to this potentid problem, we propose the use of multi-
threading. A thread is placeholder information associated with a dngle use of a
progran that can handle multiple concurrent users. Threed makes it esser to
implement amulaion by usng the process interaction gpproach, where eech thread
represents a process in the amulaion environment. If multiple users are using the
same program or concurrent requests from other programs occur, a thread is created
and mantained for each of them. The thread dlows a program to know which user is
being served as the program dternately gets re-entered on behaf of different users.
Mog of today's opeding sysgems provide support for both multitasking and

multithreading. They dso dlow multithreading within program processes 0 that the

82

sysem is saved the overhead of creating a new process for each thread [whatis,
2000].

However, a the moment of this thess writing, the threed module provided in
the latest verson of Activeperl (verson 5.6) is dill an experimentd module. Usars
are told to use a ther own risks. According to the reease notes, both the interface
and implementation are subject to change dradticdly. Perl 56 and laer have the
beginnings of support for interpreter threads, which (when finished) is expected to be
dggnificantly different from what is described in the current verson [Activeperd,

2000].

Smulation Program

The dmulation program is another ggnificant limitation of this project.
Smulation progran refers to the executable file crested udng C/C++ compiler.
When writing the smulaion program in C/C++, we have to specify a fixed number
of input arguments and output the results to a text file This gives rise to severd
limitations, such as

Number of arguments could not be added/modified, and vaue of dl the input

arguments have to be manudly supplied. Hence everything is Stic.

The reallts in the text file must follow the sandard GNU Pot deta files

format, such as gpecifying the first column as x and the second column asyy.

A <ript to tet and auto-detect the input/output parameter of the smulation
program is proposed. The dructure of the smulation program template too, can be
improved by cregting some common and usgful libraries, which can be induded

eedly in the amulaion program. Beddes the usage of C/C++ as the language for the

83

smulaion modd, we may add the choice of the language by supporting other
interpreted language such as BASIC and FORTRAN. But this would reguire the

ingtdlation of the language interpreter a the server.

Conclusion

The vaious teds conducted as discussed in this chapter verify the
achievement of Webam objectives The functiond teting shows how Websm could
be usad as teaching tools, as wdl as an online smulaion library. Three smulation
project samples were developed, and the tests conducted on them gave a very
encouraging and satisfactory result. The result dso shows that its performance is best
when Websm saver and its dients resde within the same LAN. There are many
externd factors which directly or indirectly contribute to Webam peformance, such
as number of concurrent sessons, distance between client and server, Websm server

available resource (available memory and CPU utilization), network bandwidth, etc.

With the avalability of newer technologies and better development tools for
Webam in the future, a superior results could be obtaned. We further discuss the
limitations of this project and future works proposed for next generation of Websm

in the following chepter.

CHAPTER VI

CONCLUSON AND FUTURE WORKS

This chapter explans severd identified arees where further research can be
done, in creating the next generation of Websm, and ends with a concluson where

we describe various contributions of Websm and a summary of thisthess.

FutureWorks

Vaious aeas of Websm have been identified for future works. Areas which
are highlighted for improvement are essntids to engble Websm to work more

effectively and efficiently.

Additional Services

This current verson of Websm provides five sarvices, which offer some
limited features sufficient to peforming smulaion over the web. There are many
features improvement of exising services that can be made. For example the dte
manager may provide a visud file browdng tool dmilar to the Windows-based

goplications tha performs additiond file operdtions such as copy, deete, rename,

85

print, etc. Improvements can ds0 be made to the text editor where we could provide
amulticolour and “what you seeiswhat you get” text areadisplay.

Cetan new tools can be introduced, such as a time clock to represent the
dmulated time when the smulaion is beng caried out. The cdock, messured in
second or millisecond will change on the screen as the smulaion event takes place.
Secondly, we sugget Websm to provide a digdlay that gives numericd vaues
datidics summarizing dmulation and processor utilizetion data The data provided
indude the percentage of busy, overhead, and idle time, totd count, volume of

messages sent and received, etc.

Database

We may use a database to dore the Websm users information, as well as the
gmulaion results. Access to the database will be implemented usng CGl scripts. Its
god is to accderate a new presentation of older smulation results and to dlow
comparisons between results of different smulations runs of the same smulaion
program. This task can be achieved usng a Pel module cdled Win32:0DBC by
Roth Conaulting, [Roth, 2000]. Win32:ODBC is a Pal 5 extenson tha provides
access to the Open DataBase Connectivity (ODBC). ODBC is an APl that dlows a
programmer to abdtract a program from a database such as Microsoft Access, Sybase
and Oracle. ODBC currently exists on the Microsoft Windows platforms as well as

the Macintosh and Unix.

Graphical User Interface

Jva and Javascript may be used to improve the interactivity and user
interface & the dient dte in addition to datic components such as HTML. In the
current verson of Webam, Javascript is manly used to vdidate user's input. But we
can extend its usage by udng its ability as mentioned in Chapter 1l (page 22) to
provide more dynamism to the HTML pages

Meanwhile, Java and its library such as the Abdract Window Toolkit (AWT)
is an excdlent resource for building GUI that we see in may commercd software
packages [Java, 2000]. It supports everything from cregting buttons, menu, didog
boxes and can be usad to digplay smple windows contaning grgph and Satistica

charts too, as shown in Figure 34.

B The AWT Components: 2 =1 3
enLr tem:l Lahel List itern 1 |-
; List itern 2
Bt TextArea Bl ict tom 3
e S List iterr 4
File dislag. . Listitern 4
Listitern & o
\”'3'3'-"3'3'-' S lListitem ¥
_jj _’J—‘ L@st @tem a _I.!
] TextField Button | [T Checkbox ichnice ltern 1 j
r@ i Unzigned Jawa dpplet \window

Figure 34: Example of components created usng Java AWT class

A laer verson of Java provides a more advanced library known as Swing, it has new
adlity to create more sophidicated windows like components, such as colourful
buttons and scroll bars, that are independent of the windowing sysem for specific

operding sysem [Swing, 2000]. Some of the componets that can be created using

87

Swing is shown in Fgure 35. The only limitation of Java is its soeed, which would

dow down the performance of the system.

@ ‘ﬁ% % \& [Monday =]

[¥] Check 1

January
@) Radio 2 Fehruary
ak Thursday ;ﬂar_llzh
Fridany i
Buttons Combin box Ligt

|earge Yashingtan

Theme | Help [Thomas Jefferson
HFmetal oflm

el i |Benjamin Franklin
CITl=0

T | | £ e e o e
COmetal2 otil-2. L R Thomas Paine |
Menu Slider Teut fields

Figure 35. Example of severa Java Swing Components

Animation and Visualization

Animaion and visudization hedps dudents to better undersand the
functiondity and behaviour of a smulaion modd. There ae two generd agpproaches
to implement animaion and visudization of the smulation results over the web. The
fird goproach is by udng a Jaa bassd animation sygem, dmila to the exiging
Kopeo project [Skopeo, 1997], which utilizes Javds graphic and multithreads
cgpabilities. In this project, the animation sysem is mantaned on a host saver.
Then, catan important components of the animation sysem are loaded a the client
Sde as goplet. If the user closes the page, dl the components a the dient's machine
ae dedtroyed. This type of animation system is trace driven and needs a layout and
trace file to perform an animation.

The second agpproach is by udng the Virtud Redity Moddling Language

(VRML). VRML is a language for dexcribing three-dmensond (3-D) imege

88

sequences and possble user interactions with them. Usng VRML, we can build a
sequence of visud images into Web sdtings with which a user can interact by
viewing, moving, rotaing, and otherwise interacting with an goparently 3-D scene.
For example, the smulaion gragphica results document may redirect the user to a
VRML file When the browser recognizes this particular informetion type, it will
launch the VRML pluggin, dlows us to condruct 3-D geometry and have it rendered
inred time.

However, the current problem with web-based animdion programs ad
visudization techniques is that they are not paameterised. There is no dynamic
binding to the program source code, which is to be visudized or animated. Whenever
the source example is modified or expanded, the animating sequence hes to be
adgpted manudly. Researches have been caried out by designing a parameterised
animdtion tools which is ale to animate and visudize pats of the program or the
source automdicaly and dynamicdly, without externd condruction of visudization

sequences.

Figure 36: A 3-D image created in VRML

Websm Documentation and User Guide
Documentation of Webam is built during various phases of devdopment. We

propose a thorough and comprenensve documentation to be compiled and

89

maintaned for future use It should be made avalable online and kept in cross
plaform compatible file formats such as HTML, PDF and Podsript The
documentation should contain dl the facts and specification of Websm, its hep
files FAQ, tutorid, reference and user guide. The user guide would be spedificdly
written for the new user or Adminigrator of Webam. We dso plan to implement
verson control for Websm. Its god is to show how one could use Websm as a todl
to integrate Smulaion program with the web. It would dso show a variety of

features supported by Websm, and example of some basc operations.

Websm Contributions

We dexribe here three mgor contributions of Websm, paticulaly to the
resarch and educationd sectors. The firg contribution is the ability of Websm to
produce a web-based smulator given a danddone smulaion program. Webam is
ae to recave the gmulaion program in executeble format and provide a web
interface for it. This gives the flexibility and convenience of using the programming

language of choice for the smulation modeller., and to integrate it with the web.

Secondly, Webbsm dlows the sorage of smulation program on a web saver,
thus acting as an online dore for gmulation programs. This dlows the sharing of
smulaion progran over the Internet to an excdudve user group or to the generd
public. A user can access the amulator via any sandard web browser without having
to ingdl any software on the user machine. A st of services has been developed for

the adminigtrator and users to perform smulation over the Internet.

0

Thirdy Webam could act as a teaching tool in school and universties This
would be veay ussful especidly for coursss involving moddling and smulaion. For
example lecturers could develop a amulaion program related to his course, upload it
to Webam, and dlow the sudents to peform the smulation over the Internet, hence
they could verify ther underdanding during lectures. In other words, Websm dlows
teeching and learning to be done through the Internet, hence asssing Sudents to

have a better understanding of certain topics or conceptsin thelr learning.

Conclusion

This theds reports on the prdiminary results of an on going effort to design
and devdop a webbased dmulaion evironment, to didribute Smulaion
experiments over the Internet. A prototype of that Smulation environment cdled
Websm has been developed usng CGI and Javascript. In this thess the architecture,
desgn, implementation and peformance evauation of Websm have been presented.
We bdieve tha the use of WWW, CGl and Javastript as the enabling technologies
will provide a breskthrough for web-based dmulation. Frd, the infrastructure
provided by the Internet obviates a multiprocessor hardware for smulation users, it is
dready feasble to didribute Imulation modes over different hardware plaforms
through the Internet. Secondly, the use of web browser on the client Sde makes the

goplication become fully portable and avoid steep learning curve.

Future projects in the doman of web-based smulaion environments have to
slve the open problems dong with the research, desgning and implementing

additionaly required components of such an environment. The usage and acceptance

a1

of the presented sysem for commercia use is uncertain. For this application of web-
based gmulation environment, questions about security and copyrights of the

amulation program are especidly important, and need serious consderation.

