VB6 Course – Hand Out (OOP)

Visual Basic 6.0 Programming for Beginners Course
Department of Computer and Communication System, Faculty of Engineering Universiti Putra Malaysia

Object Oriented Programming Concept

-An Analogy Approach

Introduction

Old-fashioned programs forced the user to proceed step-by-step through a series of screens. Modern event-drivenNotes programs present all the choices at once and respond to the user's actions.

Object-oriented programming attempts to respond to these needs, providing techniques for managing enormous complexity, achieving reuse of software components, and coupling data with the tasks that manipulate that data.

The essence of object-oriented programming is to treat data and the procedures that act upon the data as a single "object"--a self-contained entity with an identity and certain characteristics of its own.

Notes: Event-driven

The way we are now using computers with menus and buttons and windows fosters a more interactive, event-driven approach to computer programming. Event-driven means that an event happens--the user presses a button or chooses from a menu--and the program must respond. Programs are becoming increasingly interactive, and it has became important to design for that kind of functionality.

C++ and Object-Oriented Programming

C++ fully supports object-oriented programming, including the four pillars of object-oriented development: encapsulation, data hiding, inheritance, and polymorphism.

Scenario 1

When an engineer needs to add a resistor to the device she is creating, she doesn't typically build a new one from scratch. She walks over to a bin of resistors, examines the colored bands that indicate the properties, and picks the one she needs. The resistor is a "black box" as far as the engineer is concerned--she doesn't much care how it does its work as long as it conforms to her specifications; she doesn't need to look inside the box to use it in her design.

Encapsulation

The property of being a self-contained unit is called encapsulation. With encapsulation, we can accomplish data hiding. Data hiding is the highly valued characteristic that an object can be used without the user knowing or caring how it works internally. Just as you can use a refrigerator without knowing how the compressor works, you can use a well-designed object without knowing about its internal data members.

Similarly, when the engineer uses the resistor, she need not know anything about the internal state of the resistor. All the properties of the resistor are encapsulated in the resistor object; they are not spread out through the circuitry. It is not necessary to understand how the resistor works in order to use it effectively. Its data is hidden inside the resistor's casing.

C++ supports the properties of encapsulation and data hiding through the creation of user-defined types, called classes. Once created, a well-defined class acts as a fully encapsulated entity--it is used as a whole unit. The actual inner workings of the class should be hidden. Users of a well-defined class do not need to know how the class works; they just need to know how to use it.

Scenario 2

When the engineers at USPD (Usahasama Proton-DRB) want to build a new car, they have two choices: They can start from scratch, or they can modify an existing model. Perhaps their Kancil model is nearly perfect(hahaha!), but they'd like to add a turbocharger and a six-speed gear transmission. The chief engineer would prefer not to start from the ground up, but rather to say, "Let's build another Kancil, but let's add these additional capabilities. We'll call the new model a Pelanduk." A Pelanduk is a kind of Kancil, but one with new features.

Inheritance and Reuse

C++ supports the idea of reuse through inheritance. A new type, which is an extension of an existing type, can be declared. This new subclass is said to derive from the existing type and is sometimes called a derived type. The Pelanduk is derived from the Kancil and thus inherits all its qualities, but can add to them as needed.

Polymorphism

The new Pelanduk might respond differently than a Kancil does when you press down on the accelerator. The Pelanduk might engage fuel injection and a turbocharger - where some rocket fire would be blasted from the exhaust, while the Kancil would simply let petrol into its carburetor. A user, however, does not have to know about these differences. He can just "floor it," and the right thing will happen, depending on which car he's driving.

C++ supports the idea that different objects do "the right thing" through what is called function polymorphism and class polymorphism. Poly means many, and morph means form. Polymorphism refers to the same name taking many forms.

Source:

Teach Yourself C++ in 21 Days. Macmillan’s Computer Publishing. http://www.mcp.com
C++ Through Examples – Includes Object-Oriented Programming. P Sellappan.

Happy Programming!!

keeleon@pc.jaring.my

Sample OOP Program in C++

#include <iostream.h>

class kancil

{

public:

int width, height, weight;

float rpm;

char warna;

int laju_maksima (int bil_orang)

{

laju_maksima = 100 – (bil_orang*bil_orang);

}

void setwarna(char c)

{

warna = c;

}

};

class pelanduk: public kancil

//Inheritance

{

int turbocharger;

void sixspeed_laju_maksima(int bil_orang)

{

laju_maksima = 120 – (bil_orang*bil_orang);

}

};

Kancil Kancil_EX;
//Declaring Kancil_EX as a an object of Kancil

Pelanduk Pelanduk_Biasa;

main()

{
Kancil_EX.width = 20;

Kancil_EX.laju_maksima(4);

Kancil_EX.setwarna(M);

Pelanduk_Biasa.width = 30;

//Inherited

Pelanduk_Biasa.laju_maksima(4);

//Inherited

Pelanduk_Biasa.turbocharger = 2;

//Inherited

Pelanduk_Biasa.sixspeed_laju_maksima(2);
//Non-Inherited

return 0;

}

Page 1 of 3

